EVALUATION OF THE RATE OF CHANGE OF TRANSFER POTENTIALS IN POROUS SOLID BODIES

V. V. Beloborodov

A formula for calculating the potential diffusivity of energy in porous solid bodies has been obtained, which made it possible to express the velocity of propagation of the energy field in the form of a relation of the type of an equation of heat conduction with a constant coefficient. Under the same boundary conditions, the velocity of propagation of the energy field is intermediate in value between the velocities of propagation of the temperature and concentration fields.

The kinetics of the change of different transfer potentials (T, C, p_1, p_2) is usually described by equations of the type of equations of heat conduction with the corresponding kinetic coefficients a_h , $D_{s,liq}$, $a_m c_p \rho$, and K/g [1], and the time of propagation of the fields of the corresponding potentials, evaluated by the quantity l^2/a or l/v, can differ by several orders of magnitude [2]. In the latter case, there is no practical need to solve equations of combined transfer; it will suffice to solve an equation with a single potential whose propagation time is much larger than the propagation time of the other potentials. This problem remains unsolved in relation to enthalpy. It can be solved with the use of the energy characteristics of porous solid bodies [3].

As shown in [3], $W_{s,liq}$ is, by definition, the quantity of energy that must be expended in order that with a distance δ between holes in the liquid 1 mole (kg) of the substance overcome the resistance of the structure proper of the solid body and the liquid found in it (the solvent).

A traditional expression for the resistance to mass transfer in the steady state is δ/a . When the kinetics (the motion of the molecules) is considered in accordance with [4], we can write, taking into account the velocity of motion of the molecules δ/τ_{eq} ,

$$L_{\rm m} = \frac{\delta \frac{\delta}{\tau_{\rm eq}}}{W_{\rm s,liq}}.$$
 (1)

In accordance with [2; 4, p. 223], for a porous solid body saturated with a liquid, it can be assumed that $\delta^2/\tau_{eq} = 6D_{s,liq}$, and then

$$L_{\rm m} = \frac{6D_{\rm s.liq}}{W_{\rm s.liq}} \,. \tag{2}$$

By definition, L_m is the quantity of the substance (mole, kg) that is transferred a distance of 1 m at a velocity of 1 m/sec with an energy expenditure of 1 J.

The energy transfer is described by the expression

1108

$$L_{\rm e} = \frac{6D_{\rm s.liq}}{W_{\rm s.liq}} \, i \,. \tag{3}$$

1062-0125/00/7305-1108\$25.00 ©2001 Kluwer Academic/Plenum Publishers

UDC 66.015.23

All-Russia Scientific-Research Institute of Fats, St. Petersburg, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 73, No. 6, pp. 1142-1144, November–December, 2000. Original article submitted October 19, 1999.

Solid phase	Liquid phase (solvent)	<i>Т</i> , К	$D_{\text{s.liq}} \cdot 10^{12},$ m ² /sec	W _{s.liq} , kJ/kg	i, kJ/kg	$L_{\rm e} \cdot 10^{12}$, m ² /sec	$L_{\rm e}/D_{\rm s.liq}$
Kernel of sov	Extractive gasoline	293	0.24	24.4	200.3	11.82	49.2
seeds		203	0.27	24.0	200.3	12.00	11 1
secus		295	0.27	24.0	200.5	12.00	++.+
	I I						
	The same	293	2.43	18.9	200.3	154.8	63.6
Kernel of peanut	"	309	3.08	19.5	231.3	219.0	71.4
seeds	"	325	3.74	20.9	262.7	282.0	75.6
	"	3/1	5 53	20.0	206.2	470.4	85.2
		541	5.55	20.9	290.2	470.4	05.2
	1						
Microatomic sections of		298	0.71	22.2	209.9	40.26	57.0
peanut seeds of	Commercial hexane	298	0.72	22.2	209.9	40.86	57.0
different thickness		298	0.63	22.5	209.9	35.28	55.8
		208	0.34	23.6	200.0	18 12	53.4
		298	0.54	23.0	209.9	10.12	55.4
	1		1			1	
Crumpled sunflower:							
without husks	Hexane	323	0.21	32.3	259	10.2	48.6
5% husks	"	323	0.05	30.2	259	2.58	51.6
10% busks	"	373	0.05	30.2	259	2.58	51.6
10% husks		323	0.05	30.2	259	2.30	51.0
15% husks		323	0.06	29.7	259	3.12	52.2
25% husks	"	323	0.21	26.7	259	12.24	58.2
	Extractive gasoline	328	9.1	25.2	269	583.2	64.2
	Lind we dive gusseline	328	15.2	23.8	260	1030.8	67.8
		328	13.2	23.8	209	1030.8	07.8
		328	17.3	23.0	269	1213.8	70.2
		328	7.1	23.5	269	487.8	69.0
	Dichloroethane	328	6.4	26.9	269	384.0	60.0
Damp soy petals	"	328	15.4	22.3	269	1114.8	19.8
of different		220	21.7	20.5	20)	1709.2	70.2
of different		328	21.7	20.5	269	1708.2	19.2
thickness		328	16.8	20.0	269	1356.6	81.0
	Extractive gasoline	325	0.38	25.6	263	23.4	61.8
	2	325	0.30	26.1	263	18.12	60.6
		229	2.50	20.1	260	107.4	76.0
		328	2.39	21.2	209	197.4	70.2
	1		1			i.	ı I
	Trichloroethylene	300	5.1	17.4	214	435.6	73.8
		300	8.5	17.6	214	620.4	73.2
	The same	300	191	14 9	214	1645.8	964
	The sume	200	10.9	16.1	214	961.6	70.9
		300	10.8	10.1	214	801.0	79.0
~ ·				a a <i>i</i>			
Soy grits	Extractive gasoline	328	3.11	20.4	269	246.0	79.2
						1	
Grits of	The come	200	0.65	24.2	260	42.0	66.6
coriander waste	i ne same	528	0.05	24.3	209	43.2	00.0
	, I						
Prepressed sunflower							
netal	Hexane	323	16.1	22.3	259	1122.0	69.6
Pettin			1			1	

TABLE 1. Results of Calculation of the Potential Diffusivity of Energy

Since the chemical potential per unit volume of the substance is

$$\mu = \rho \left(\mu_0 + RT \ln C\right), \tag{4}$$

the material and energy fluxes expressed in terms of it will, respectively, be equal to

$$q_{\rm m} = L_{\rm m} \,\rho RT \frac{\partial}{\partial x} \left(\ln C \right) \,, \tag{5}$$

$$q_{\rm e} = L_{\rm e} \,\rho RT \frac{\partial}{\partial x} \left(\ln C\right)\,,\tag{6}$$

 $L_{\rm e}$ is an analog of the coefficients $a_{\rm h}$ and $D_{\rm s,liq}$; therefore, in the case where it is constant, we can write an equation for the velocity of propagation of the chemical potential:

$$\frac{\partial \mu}{\partial \tau} = L_{\rm e} \nabla^2 \mu \,. \tag{7}$$

Results of calculation of L_e are presented in Table 1. The data on $D_{s,liq}$ are taken from the works cited in [3], while *i* is taken from [5]. As is seen from the table, in the cases considered, the quantity L_e is intermediate between $D_{s,liq}$ and a_h [6], i.e., under the same boundary conditions the velocity of propagation of the energy field (the field of μ) in porous solid bodies is also intermediate in value between the velocities of propagation of the fields of *T* and *C*. This is natural, since μ is a function of *T* and *C*.

NOTATION

T, temperature; *C*, concentration; p_1 , unrelaxed vapor pressure; p_2 , hydrodynamic pressure of the liquid or the liquid mixed with the vapor (gas); a_h , thermal diffusivity; $D_{s,liq}$, diffusivity in the solid–liquid system; $a_m c_p \rho$, potential diffusivity of unrelaxed vapor pressure; a_m , potential diffusivity of mass transfer; ρ , density; c_p , heat capacity of the moist air in the porous body; *K*, filtration coefficient; *g*, free-fall acceleration; *a*, potential diffusivity (a_h , $D_{s,liq}$, etc.); δ , elementary displacement of a molecule; *v*, velocity of propagation of the field; *l*, dimension of a particle (radius of the sphere, half of the thickness of the plate); τ_{eq} , time of oscillation of a molecule about the equilibrium state in the liquid inside the porous body ("time of settled life"); *i*, enthalpy of the diffusing substance; L_e , potential diffusivity of energy; μ , chemical potential; *R*, gas constant; q_m , material flux; q_e , energy flux; μ_0 , chemical potential in the steady state; τ , current time; *x*, coordinate.

REFERENCES

- 1. A. V. Luikov and Yu. A. Mikhailov, Theory of Heat and Mass Transfer [in Russian], Moscow (1963).
- 2. V. V. Beloborodov, Inzh.-Fiz. Zh., 72, No. 1, 141-146 (1999).
- 3. V. V. Beloborodov, Inzh.-Fiz. Zh., 73, No. 2, 283-287 (2000).
- 4. Ya. I. Frenkel', *Kinetic Theory of Liquids* [in Russian], Leningrad (1975).
- 5. I. V. Molchanov, Technological Equipment for Fat-Processing Industries [in Russian], Moscow (1965).
- 6. A. S. Ginzburg (ed.), *Thermophysical Characteristics of Foodstuffs and Food Materials. Handbook* [in Russian], Moscow (1975).